Values of random polynomials in shrinking targets
نویسندگان
چکیده
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملHosoya polynomials of random benzenoid chains
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
متن کاملSome Results on the Field of Values of Matrix Polynomials
In this paper, the notions of pseudofield of values and joint pseudofield of values of matrix polynomials are introduced and some of their algebraic and geometrical properties are studied. Moreover, the relationship between the pseudofield of values of a matrix polynomial and the pseudofield of values of its companion linearization is stated, and then some properties of the augmented field of ...
متن کاملRandom walk with shrinking steps
We outline the properties of a symmetric random walk in one dimension in which the length of the nth step equals l, with l,1. As the number of steps N→` , the probability that the end point is at x approaches a limiting distribution Pl(x) that has many beautiful features. For l,1/2, the support of Pl(x) is a Cantor set. For 1/2<l,1, there is a countably infinite set of l values for which Pl(x) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2020
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/8204